skip to main content


Search for: All records

Creators/Authors contains: "Hong, Bin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As one of the least understood aerosol processes, nucleation can be a dominant source of atmospheric aerosols. Sulfuric acid (SA)-amine binary nucleation with dimethylamine (DMA) has been recognized as a governing mechanism in the polluted continental boundary layer. Here we demonstrate the importance of trimethylamine (TMA) for nucleation in the complex atmosphere and propose a molecular-level SA-DMA-TMA ternary nucleation mechanism as an improvement upon the conventional binary mechanism. Using the proposed mechanism, we could connect the gaseous amines to the SA-amine cluster signals measured in the atmosphere of urban Beijing. Results show that TMA can accelerate the SA-DMA-based new particle formation in Beijing by 50–100%. Considering the global abundance of TMA and DMA, our findings imply comparable importance of TMA and DMA to nucleation in the polluted continental boundary layer, with probably higher contributions from TMA in polluted rural environments and future urban environments with controlled DMA emissions.

     
    more » « less
  2. The main nucleating vapor in the atmosphere is thought to be sulfuric acid (H2SO4), stabilized by ammonia (NH3). However, in marine and polar regions, NH3is generally low, and H2SO4is frequently found together with iodine oxoacids [HIOx, i.e., iodic acid (HIO3) and iodous acid (HIO2)]. In experiments performed with the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we investigated the interplay of H2SO4and HIOxduring atmospheric particle nucleation. We found that HIOxgreatly enhances H2SO4(-NH3) nucleation through two different interactions. First, HIO3strongly binds with H2SO4in charged clusters so they drive particle nucleation synergistically. Second, HIO2substitutes for NH3, forming strongly bound H2SO4-HIO2acid-base pairs in molecular clusters. Global observations imply that HIOxis enhancing H2SO4(-NH3) nucleation rates 10- to 10,000-fold in marine and polar regions.

     
    more » « less
    Free, publicly-accessible full text available December 15, 2024
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane structural asymmetry in the device, both of which can be difficult to implement in practical applications. Here, we report bias-field-free SOT switching in a single perpendicular CoTb layer with an engineered vertical composition gradient. The vertical structural inversion asymmetry induces strong intrinsic SOTs and a gradient-driven Dzyaloshinskii–Moriya interaction (g-DMI), which breaks the in-plane symmetry during the switching process. Micromagnetic simulations are in agreement with experimental results, and elucidate the role of g-DMI in the deterministic switching processes. This bias-field-free switching scheme for perpendicular ferrimagnets with g-DMI provides a strategy for efficient and compact SOT device design.

     
    more » « less